

Coal Technology Needed by the US Power Market

Combustion Technology University Alliance Workshop – September 12-13,2002

What is the Future for Coal?

World Fuel Energy Consumption for Electricity (Quads) 32 % Overall Fuel Growth

Fuel Growth For Electricity (Quad)

- High Growth in Developing Countries Driven By Power Demand, Abundant Coal and Low Environmental Concern
- Stagnant Growth in Industrialized Countries Driven
 Primarily by Environmental Concern
- Revitalizing Coal Growth in Industrialized Countries are key to unlocking Coal's Long Term Growth Potential

Environmental Concern is the Greatest Limiting Factor to Coal's Future

Source: International Energy Outlook, EIA, 2000

Combustion Technology University Alliance Workshop – September 12-13,2002

Existing US Power Fleet

Coal Plants Over 30 Design Year Life

- New Gas Capacity Aimed at Filling Short
 Term Supply Problem
- But Bigger Long-Term Capacity Problem is Evident
 - Most US Power Comes from Coal (51%)
 - Many are Emitting Well Above NSPS
 - Aging Fleet

Clean Coal is the Solution

Source: UDI Combustion Technology University Alliance Workshop – September 12-13,2002

23-Sep-02 2

Life Extension, Repowering or New Generation

Combustion Technology University Alliance Workshop – September 12-13,2002

FGD Retrofits, Lime Injection or CFB

Combustion Technology University Alliance Workshop – September 12-13,2002

Low NOx Combustion, SNCR, SCR

Combustion Technology University Alliance Workshop – September 12-13,2002

US Emission Regulation Outlook

Combustion Technology University Alliance Workshop – September 12-13,2002

23-Sep-02 6

What are New Coal Plants Facing?

Year	NOx	SO2	Particulate*	Mercury	CO2
	lb/MMBtu	lb/MMBtu	lb/MMBtu	% Red.	% Red.
1971 NSPS	0.7	1.2	0.1	N/A	N/A
1978 NSPS	0.5 - 0.6	0.2 - 1.2	0.03	N/A	N/A
2001 NSPS	0.15	0.2 - 1.2	0.03	N/A	N/A
2001 Proposals	0.06 - 0.1	0.06 - 0.15	0.01	40%	N/A
2010 Projection	0.04	0.04	0.01	90%	7% below 1990?
Research Target (ppmv@3.5% O2)	0.02 (13)	0.02 (10)	0.005	95%	TBD

 $^{^{*}}$ New PM $_{2.5}$ requirement is reflected in SO2 and NOx limits

R&D Should Focus on Achieving these Emissions

Combustion Technology University Alliance Workshop – September 12-13,2002

23-Sep-02 7

What Should be our Research Focus?

Emissions, Emissions, Emissions!

- Flue Gas Cleaning Technology
- Hg Control Technology
- Gasification
- Disruptive Technologies
 - Clean Distributed Generation Technology
 - Energy Storage

Combustion Technology University Alliance Workshop – September 12-13,2002